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Abstmd. We prove that the small field asymptotic behaviour a f the  Stark-Wannier ladders 
near the real direction is generically highly singular. This result is in agreement with the 
conjecture of a chaotic behaviour of the lifetime of the states because of infinitely many 
crossings. 

Since the original construction of the Stark-Wannier ladders in the single-band approxi- 
mation (Wannier 1960) the problem of the existence and main features of their states 
was posed. It was soon pointed out that they are asymptotic, up to any order, to the 
formal perturbative series (Nenciu and Nenciu 1981) and that they should be sharp 
resonances (or bound states in singular cases as suggested by Berezhkovskii and 
Ovchinnikov 1976 and Bentosela eta/ 1982a). It was also evident that the main technical 
problem comes from the asymptotic density of levels for small field and from the many 
possibie crossings. 

The analysis (both mathematical and numerical) of such crossings on suitable 
models showed a chaotic behaviour of the widths, associated with the (avoided) 
crossing phenomenon for the levels (see Avron 1982 and Bentosela et a /  1982b). The 
numerical and analytical study extended to the complex electric field (Ferrari et al 
1985) gave a more direct analysis of the crossing effects as  cuts of Bender-Wu type 
(see Bender and Wu i969, Crutchfieid iSi8j. 

Meanwhile the rigorous study in complex field started by Avron (1979) led to the 
discovery of the asymptotics in any complex direction (Bentosela et al 1988). On the 
other hand, the asymptotics in the real direction was established by Nenciu and Nenciu 
(1981) to all orders for each pseudoeigenvalue, or resonance (if existent in this region 
of the parameters). 

by Herbst and Howland 1981) at a small real field, in order to compare it with the 
complex direction asymptotics already calculated. The most interesting result (see 
proposition 1) is that such an expansion is generically different, up  to second order 
(the next one beyond the Wannier approximation), from the one in the complex 
direction. In particular, for the first ladder the second-order coefficient in the asymptotic 
expansi~c i:: :he c~mp!ex  di:ectiox vanishes, whi!e !he :ea!-di:eainn o x  direrges, 
when the strength of the periodic potential tends to zero. 
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Bounded analyticity is excluded by such different expansions in any finite sector 
containing the positive ray as made precise in proposition 2 and related remarks. Note 
that the existence of a natural boundary line tangent to the real axis at the origin (as 
in the model proposed by Bessis et a1 (1989) in the context of symplectic maps or a 
sequence of divergence, in addition to or in place of a sequence of crossing-type 
singularities, is not excluded. In any case the width of each resonance is certainly 
sensitive to such analyticity structures as can be seen in the finite crystal model 

Now we discuss the situation for complex values of the electric field parameter 
following the treatment of Bentosela et ai 1988. Let us consider, as  above, a translation 
analytic even potential V ( x )  = V ( x + a ) ,  a > O ,  of the Herbst-Howland type with the 
further condition that all the gaps of the spectrum are open. In particular, we consider 
the translated Hamiltonian operator, in order to define the resonances in the limit q + 0: 

,y( F+illj := P Z +  a) + ( F +  i q ) ( x  + LYEC. ( i j  
It is easy to show that H, (F+iq)  is an analytic family of operators for q > O  and 
0 < 3. < b, for some b > 0. The spectrum, which is discrete and consists of ladders of 
eigenvalues 

(Eentosc!z e! n! !982!?, Fcrr.rl C! a! !985). 

{~..,(F+i.rl)).eFu.je~ = { A , , ( F + i ? ) + j n ( F + i ? ) } , . . , j s z  17>0 (2) 
is independent of LY and such eigenvalues are analytic at least in the disks BR,,(iRn). 
Besides, for 7 = 0 and S a  = b > 0, the operator H , ( F )  defines the resonances lying in 
the strip S, := {z  E C 1 - bF < 32 s 0). Following the latest results given by Buslaev and 
Dmitrieva (1987,1989), Bentosela and Grecchi (1990) and Combes and Hislop (1990), 
we suppose the existence of ladders of resonances A n , j ( F )  having the Wannier states 
as a small field limit. One can prove that a strong resolvent limit exists for the family 
Hm(F+is) 2s 1: +0, for n and F # O  fixed, Thus !he resonan~es are, In genera!, !he 
limits of the eigenvalues of He( F +  iq)  as q + 0. As a minimal hypothesis let an analytic 
continuation of the eigenvalues An,, exist from the disks BR,,(iRn) to a strip -R, G M z  G 
R,, 32 > 0 and, defining the continuation in a suitable way, such that 

lim A..,(F+iq) = A , ; ( F )  F > O  (3) 
7 - 0  

if :hey !ie i:: the :trip. Sizce the fxtnl!y .Em(F+iq)  is sna!y!ic, !he singu!arlties &!he 
eigenvalues An,,(F+iq) are given by the possible crossings, that is they consist of 
algebraic branch points, up to accumulation effects. 

Here is given the main result concerning the difference between the asymptotic 
expansion to the second order for real and complex electric field. Such a result is 
obtained, as mentioned previously under the following assumption. 

Hypothesis. There exists a !adder of resonances A , ; ( F )  for small F > 0 ,  such that 
A,,(F)+(€.)asF+O, w h e r e ( E , ) : = ( a / 2 ? r ) l % E E . ( k ) d k .  Here 93 isthe Brillouinzone, 
i.e. the torus W/(Z?r /a ) .  

In this case, the Nenciu-Nenciu analysis guarantees the asymptotic expansion to all 
orders of A,,,,(F) as pseudoeigenvalues. 

Proposition 1. Let c. be the second-order coefficient of the asymptotic expansion of 
the eigenvalue A#,;(F+iq) of H , ( F + i v ) ,  analytic in the disk BR,,(iRn), so that 
A , j ( F + i q ) = ( € , ) + j a ( F + i q ) + c , ( F + i q ) 2 +  O((F+iq)'") 

as I F + i q ( + O  ( 4 )  
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where F+iq lies in any sector l n / 2 - a r g ( F + i ? ) l ~ ~ , O < B < 7 1 / 2 ,  where n E N ,  j € Z .  
Let d.  be the second-order coefficient of the asymptotic expansion of the resonances 
A , j ( F )  of H , ( F ) ,  as F + O + ,  so that 

Am,,( F )  = ( E , ) + j a F +  d,F2 + O(F").  ( 5 )  

Then, generically, c, # d, .  

Proof: We compute the coefficients of the asymptotic series using the crystal momentum 
representation (CMR) (see Bentosela et a1 1988) in the real case (for the complex 
direction of the electric field see Bentosela et a1 (1988)). In such a representation the 
operator H,(O) becomes the a-independent diagonal matrix &(O) = E since the 
Wannier states w: = { W : ( K ) } ~ ~ =  by analytic translation become w:,., = e"" (e'K"w:), 
where K is defined by (Kw:) ( K ) : =  K w f ( K ) ,  and they are in l'(Z) for O <  Isul< b. 
iviotr generaiiy ihe operaior ii, ( F  + iv j becomes 

fi,( F +iv) = fi,( F +iv)  + a( F +iq) = E + ( F  +i?)[X + iD]+ a ( F  +ill) (6) 
where ( X ) , , , ( k ) ~ X , , , ( k ) : = i ( w : , a w ~ / a k ) , Z  for 0<15al<b and D is the derivative 
operator ( D a ) , , ,  := s ; ( a a , / a k ) .  

Now let n EN be fixed. In Bentosela et a1 (1988) it is proved that (4) holds with 
c,  =f,(k-.), where f , ( k )  is the even analytic function defined on the Brillouin zone 93 
by t 

and in is uniquely determined by 
have c n - d n  =?,,(in), where 

= ( E , ) ,  O <  & < s / a .  As we shall prove we 

G ( k ) : =  p ( k )  - (p)= V ( k ) - &  1 p ( k )  dk. (8) 
271 

Since f , ( k )  is analytic and not identically zero in (t, v / a ) ,  it has a finite number of 
zeros in any compact contained in (0, x / a ) ,  so that f m ( k n )  = c, - d, # 0 generically. In 
fact there is no particular relation between?" and E,, as can be seen from the definition 
(formula (7)) .  In any case, the proof of non-existence of a hidden symmetry destroying 
such genericity comes from the result given in proposition 6 ,  assuring f , ( i , ) # O  for 
small periodic potential. 

Now it remains to prove that 

Following Nenciu and Nenciu (1981) we redefine the band functions u p  to any order 
of F such that we obtain a diagonal operator K ( F ) =  g(F)+iFD+O(F")  starting 
from G ( F )  = E +  FX+iFD, where Z'(Ff-Z;"I,W"'F'. We look for a unitary family of 
matrices U ( k )  such that formally 

U- ' (  E + FX + iFD) U = 8 + i FD (10) 

U - ' ( E +  FX)U+FU-'( iDU) = 8. (11) 

that is 

t Series (7) i s  unifcrmly convergent, far n fired, sincc the nth gdp is open and X, , , , , , ( k ) :=  ( @ , , ( k ) ) , , . , , >  for 
each m, where the m,trix @,, is bounded. 
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We introduce a formal iteration method of solution which will be extensively discussed 
in a further paper. Let U = II:=, U,, where 

m 

u;lu, = n  and u,-n+ F'u:) as F+O (12) 
I = ,  

so that we have DU, = F'DU/"+ O(  F'+'). Moreover each U, is to be determined so that 

U ; ' ( E + F X ) U , =  8, U;'(8,- ,  + F X , _ , ) U , =  %, (13) 

where 8, is a diagonal matrix for each r and X,:= U;'(iDU,). 
As a consequence, it is easy to obtain at least the following asymptotic estimates 

X,=iF'DUj"+O(F,+,)  and 8 , -8 ,_ ,=O(F ' )  (14) 

which make consistent the assumption (12). 
For our purposes it is enough to note that U:"=iFT(X), where ( T ( X ) ) , , : =  

i X a , , , / ( E n  - E, )  is the Friedrichs operator of X with respect to E. Hence, denoting by 
AD the diagonal part of A, i.e. (AD),,, := A,,S; ,  we have 

g = 8,+ FXp+ O ( F 3 )  = g1+ F2(iDU\")D+ O(F') 
(15) 

= 8, - F2r(xr+ O ( F ~  = %,+ O ( F ~  

since r(X)D=O. It turns out that, up to second order, it is enough to compute 
that is to diagonalize E + FX. The perturbative theory gives us 

8 = 8, + 0 ( F 3 )  = E + FXD+ 8',2'F2+ O(F')  = E+ gj2'F2+ 0 ( F 3 )  

where 

(16) 

Following Wannier, the ladder is given by 

L , j ( F )  = ( ( W , , ) + W  
= ( E . ) + j u F + ( (  8i2')",")F2+ O(  F') 

= ( E . ) + j u F + (  1 u)F2+O(F3) 
m t n  E n - &  

whence ( 9 )  follows, and c. # d.. U 

Now, we compare the asymptotic behaviour of A,,,,(F+iq) as F + i q + O  at each 
complex direction and the one at the real direction as F+Ot. In particular, admitting 
to extend analyticity of A,,,(F+it)) from the disk BR,,(iRn) up to the real direction, 
for F >  0 small, with continuity on the boundary, the inequality c. # d. implies the 
existence of a strong divergence sequence for An,, tangent to the real axis at the origin. 
This follows from classical results as the Phragmkn-Lindelof theorem. 

Let us stress that the existence of such strong divergence sequence seems to be less 
natural than the existence of a horn of singularities of h , , , (F+iq) .  
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Proposition 2. Let SF,6 := { z  ECIO< arg z < E, IzI < S), E > 0, S > 0. If the eigenvalue 
A , j ( z )  is analytic in S,-.s and continuous in G - { O ) ,  for some E > O  and f > O ,  then 
there exists a sequence { z ~ } , ~ ~ ,  zl E Si,5, liml++mzl = 0 and Iiml++- arg(z,) = 0 such that, 
for any p > 0, 

(19) lim I A ~ , ~ ( Z ~ ) ~  e x p [ - ( ~ ~ ( - ~ ]  = +m. 
I-*- 

Pmnf I et s = - / n /  r nmnfiritinn 1 n d  hTr +ha h.mntha& the fllnrtinn -_. ~ . . ,Y  .". ", y."~""...".. ...." -, .... ..Jy"...-".", ... 
A.(z) := z-*[A..~(z) - ( E . )  - jaz] (20) 

is analytic in Se,$ and continuous in G - { O ) ,  moreover has different real limits on 
the boundaries of the sector S,,s, in fact: 

Hence, by the Phragmen-Lindelof Theorem (see Hille 1962), there exists a sequence 
qp E S , p  S , , ~ , I E N ,  such that liml-+~ul,p =Oand A . ( U ~ , ~ )  = O(exp[~u l ,~~~" ] )  as I +  +W. 

U So, choosing e.g. I = p, the sequence zI = uLI satisfies proposition 2. 

Remark 3. Actually we have no expiicit example of a function satistying aii the 
conditions of propositions 1 and 2, so that the class of such functions could be void. 
In such a case the only possible conclusion is the following one: the origin is the limit 
point of a sequence of singularities of A n , j ( z )  belonging to the domain D,= 
{ z E C ~ ~ Z > O , ! R Z > O ,  zeB,,(iR,)} (i.e. thereexistsahornofsingularitiesforA,,(z)). 

Remark 4. If the eigenvalue An,,(z) is meromorphic in SF,* := { z  E C I-& < arg z < E ,  

I z I<S}  then the positive direction is a Julia direction (see Hille 1962, chapter 15, 
section 4) at 0, i.e.: A n , j ( z )  on V&, S > 0, omits at most two values of c. This means 
that in the hypothesis of analyticity on the real axis, we have a wild behaviour of the 
function in a neighbourhood of the real axis. In such a case we have an  example 
partially fulfilling the hypothesis: the function f ( z )  = tan(z-') exhibiting a sequence 
of singularities on the real axis. 

Remark 5. As recalled in the introduction an explicit example exhibiting the same 
phenomenon of different asymptotic behaviours in different directions in the sectors 
arggE[3v/2, 3 ~ / 2 + p ] ,  0 < p < 3 v ,  is given by the eigenvalues of the arharmonic 
oscillator T ( g )  = p 2 - x 2 + g x 4 .  In such a case the existence of a horn of singularities 
given by the crossings of levels (see Bender and Wu 1969, Simon 1970, Crutchfield 
1978) is completely proved. 

Finally, we give the behaviour, when the periodic potential tends to zero, of the 
second order coefficients c ,  and d, of the asymptotic expansions (4) and (5) in the 
comp!ex 2nd rea! e!cctrk fie!?! reopec!ive!y, where 

CI =f,Ck) di = (fa), 
E, is defined by E , ( c , ) = ( E , ) ,  O < i , < f f / a  and f,(k) is defined in (7). Such a result 
agrees with and extends the statement of proposition 1. 
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Let us set V ( x )  = p V , ( x ) ,  O < @ <  1. The following proposition holds: 

froposifion 6. If the periodic potential is small enough then c, f d , .  In particular: 

lim c, = 0 and lim d, = -m. (21) 
010 010 

13001: Following Wannier let us consider the Schrodinger equation for the Fourier 
coefficients of the Bloch waves 

( K + k ) ' w ; ( K ) +  1 pKK-,w:(J) = E , , ( k ) w i ( K )  k E B, K E Z. (22) 
j s z  

Performing the derivative in (22) with respect to the quasi-momentum k we obtain the 
well known expression 

From a second derivative of (22) we obtain 

For k E ( o , ~ / a ) ,  as PLO,  we have ihai E,,(ic) tends to [ ( - i ) " - ! k + i u ? r / a j ' ,  here 
Y : =  [ n / 2 ]  is the integer part of n / 2 ,  E i ( k )  tends t o 2 ( - 1 ) " - ' [ ( - 1 ) " - ' k + 2 u ~ / a ] ,  E : ( k )  
tends to 2 and so 

lim Z IX.,,(k)l2[E.(k)-E,(k)l=O V k ~ ( O , r / a ) .  (25) 
010 m e n  

Now we are ready to prove the statements in proposition 6. 
From (7) we have that 

foranykE(0,  ~/a),inparticularwehavethat c , : = f , , ( ~ , ; ) - O a s P ~ O b e i n g ~ , ~ ( O ,  ?r /a ) .  
In contrast, the term d, := ( f i )  is arbitrarily large when the periodic potential tends 

to zero. In fact, for any h > 0 we have that 

In order to estimate the latter integral we give the useful estimate obtained from (22) 
and (23): 
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where c, denotes a constant. Hence 

a / 2 ~  [ 2 -  E;(k)-c,] d k  
[ E , ( ? i / a  - h ) - E , ( ? r / a  - h)I2  

since El(?r/a)=O and E , ( k ) ~ [ ( - l ) ' - ' k + 2 ~ r r / a ] * ,  u = [ n / 2 ] ,  as pJ0 and k e  
U (0, ?ria). Proposition 6 is completely proved since h 20 is arbitrary. 

Conclusion 

The existence of different asymptotics in the real with respect to the complex directions 
gives evidence for a horn of singularities for Stark-Wannier ladders similar to the 
Bender-Wu ones already observed in the finite crystal case. We have left, as a possible 
but improbable case, the alternative of the existence of a sequence of strong divergence 
for such eigenvalues. In any case the effect of the behaviour of the width of each 
resonance, not determined by the asymptotic expansion, should not be less dramatic. 
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